Планируя развернуть систему видеонаблюдения, вы неизбежно задаетесь вопросами: куда и сколько установить камер? Как определить наилучшие места их расположения, чтобы избежать «слепых зон»? На каком расстоянии от объектов наблюдения установить камеры, чтобы в итоге получилось достаточно четкое изображение нужных деталей?
На вид и качество изображения большое влияние оказывают не только параметры видеокамеры и объектива, но и их правильное сочетание. Так, иногда отличный, дорогой объектив может давать даже худшее изображение, чем альтернативная дешевая модель.
Расскажем об основных факторах, влияющих на качество и масштаб видеоизображения, которые следует учитывать при выборе объектива для камеры, чтобы по максимуму использовать их возможности и при этом избежать ненужных затрат.
Угол обзора объектива
Одной из важных характеристик систем видеонаблюдения является угол обзора объектива. От него напрямую зависит количество и возможные места установки камер на объекте. Угол обзора объектива определяет величину видимого объекта и масштаб изображения в кадре.
Из этой схемы видно, что на величину угла обзора напрямую влияет не только фокусное расстояние объектива, но и размеры матрицы:
И если с фокусное расстояние определить довольно легко, зная модель объектива, то с размером матриц не все так просто.
Размер матрицы видеокамеры
В зависимости от соотношения сторон (4:3 или 16:9), у матриц с одной и той же диагональю физические размеры различны (Таблица 1). Поэтому, например, камера на матрице 1/3’’ с соотношением сторон 4:3 дает больший угол обзора по вертикали и меньший по горизонтали, чем камера на матрице с такой же диагональю, но соотношением 16:9.
Формат матрицы
Диагональ матрицы (мм)
Соотношение сторон
4:3
16:9
Ширина (мм)
Высота (мм)
Ширина (мм)
Высота (мм)
1/4
4.23
3.39
2.54
3.69
2.08
1/3
5.64
4.52
3.39
4.92
2.77
1/2.8
6.05
4.84
3.63
5.27
2.96
1/2.7
6.27
5.02
3.76
5.47
3.07
1/2.5
6.77
5.42
4.06
5.90
3.32
1/2
8.47
6.77
5.08
7.38
4.15
В целях облегчения подбора совместимой оптики и расчета углов обзора обычно заявляют ближайшее из стандартных значений для диагонали матрицы: 1’’, 1/2’’, 1/2.5’’, 1/2.7’’, 1/2.8’’, 1/3’’, 1/4’’. При этом измерять ее принято в видиконовых дюймах. Эта единица измерения, равная 2/3 обычного дюйма, была введена со времен зарождения телевидения, когда приёмным элементом в телекамере служила электронная трубка («видикон»), а размер обозначал её диаметр (в который должен был вписываться с запасом снимаемый кадр).
Помимо этого необходимо помнить, что на некоторых режимах работы камеры часть пикселей матрицы не используется. Поэтому при определении угла обзора следует говорить не столько о размере матрицы, сколько о размере активной области матрицы.
Для наглядности приведем несколько примеров:
N1000 (Рис. 2): для всех возможных режимов работы активная область матрицы остается неизменной.
Размер матрицы: 3.7 х 2.77мм, диагональ 4,62 мм=1/3.67 видиконовых дюйма (ближайшее значение 1/4’’).
N37210 (Рис. 3): в зависимости от режима работы активная область матрицы изменяется почти на 30% по вертикали и 25% по горизонтали.
Размер матрицы: 5.71 х 3.14 мм, диагональ 6.52 мм=1/2.6 видиконовых дюйма (ближайшее значение 1/2.7’’). При разрешении 1024х768 размер активной области матрицы уменьшается до 4.58 х 2.32 мм.
BD2570 (Рис. 4): в зависимости от режима работы активная область матрицы изменяется почти на 50% по вертикали и 25% по горизонтали.
Размер матрицы: 5.61 х 4.31 мм, диагональ 7.08 мм=1/2.39 видиконовых дюйма (ближайшее значение 1/2.5’’). При разрешении 1280х720 размер активной области матрицы уменьшается до 4.22 х 2.21 мм.
Из этих примеров видно, что величина матрицы может отличаться от указанной в паспорте, а размер ее активной области - меняться в зависимости от режима работы.
Однако, при вычислении угла обзора следует учитывать не только эту особенность, но и тот факт, что аберрации реального объектива приводят к усложнению расчетов.
В большинстве объективов, используемых в CCTV, повышение качества изображения осуществляется путем усложнением оптической системы с целью уменьшения аберраций, влияющих на разрешающую способность. Это часто приводит к увеличению геометрических аберраций, таких как дисторсия (рис. 5), воспринимаемых как побочный эффект.
Например, положительная дисторсия сокращает угол обзора непропорционально быстро при уменьшении активной области матрицы (синяя рамка на рис. 6).
Этот эффект наблюдается как при смене режимов работы одной и той же камеры, так и при установке объектива на матрицы разных форматов. Например, видимый угол обзора у 8-мм дисторзирующего объектива на матрице 1/2 может быть как у 6-мм, а на матрице 1/3 - как у 7-мм.
Непропорциональное уменьшение угла обзора реального объектива с положительной дисторсией объясняется смещением фокальной плоскости в центре кадра, в отличие от идеального объектива (рис. 7), для которого верны соотношения
Таким образом, спрогнозировать, какими будут качество и масштаб видеоизображения для пары «камера-объектив» можно достаточно точно только если учитывать все влияющие на это параметры видеосистемы. Универсальный калькулятор BEWARD позволяет не просто вычислить области видимости и углы обзора, но и подобрать подходящие объективы для камер BEWARD.
Источник: beward.ru